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Abstract

Recent work by Google Brain has shown that Reinforcement Learning could be used
to automate the process of data augmentation for image classification. Specifically,
following successes in applying Reinforcement Learning (RL) to design optimal neural
network architectures with Neural Architecture Search (NAS) [1], the authors have
continued their work to meta-learn autonomous data augmentation policies using RL
using a RNN as controller [2]. The novel task is formulated as a discrete search problem,
where the goal is to find groups of transformations that yield the highest improvement
in the performance of an image classifier from an extensive pre-defined list of possible
transformations (crop, flip, rotate, shear, etc.). The reward is obtained as the loss function
yielded when the image classifier, trained using the augmented data, is tested on a
validation set with a child model. In this project, we initially aimed at extending their
work to the problem of image segmentation. However, due to the extensive scope of
the project’s preassumed knowledge and computational power, we instead focused on
implementing and improving their closed-source algorithm in the context of image
classification.

1 Introduction

In the context of data-driven computer vision, data augmentation involves increasing the size of
available data by applying various content-invariant geometric transformations to generate artificial
samples for training, thereby improving the learner’s generalization capacity. For example, when
dealing with deep learning-based image classifiers, rotating each image does not fundamentally alter
the desired content within nor its final label, and could therefore be applied to increase the size and
diversity of the dataset. The notion of invariance in the transformation depends on the task at hand,
where the goal is to transform input images such that it preserves semantic meaning so the model will
be i.e. scale or rotation invariant. The concept of data augmentation is particularly helpful when data
sample for the task at hand is small, i.e. in medical imaging domains. In addition to bootstrapping
few-shot learning, data augmentation is known to be effective in reducing overfitting in training.
Indeed, certain objects could be solely identifiable through subset of features, i.e. color, geometric
shapes, edge orientation, or a mutually exclusive combination of them. Therefore, data augmentation
has become an indispensable step in training state-of-the-art image classifiers where human operators
use their intuition to decide which transformations are deemed invariant.

2 Related Work

Hyperparameter search: Neural architecture design has been an active area of research []
that saw recent successes with a class of Bayesian Optimization (BO) methods, i.e. Gaussian
Processes [3]. The task of automating neural network training by replacing manual grid search
with meta-learning methods is an ambitious yet highly rewarding goal in Machine Learning.
Historically, BO was mostly used to find optimal hyperparameters and model configurations
that are non-differentiable, discontinuous, and time-consuming to evaluate. It uses an under-
lying Gaussian Process to model a given black box objective function and is well suited to



optimizing the performance of classification and regression models. Recent work such as
AutoKeras [4] have shown that in the absence of RL under Google’s closed source work on
AutoML, BO can in fact be a more efficient approach to NAS at the cost of less effective improvement.

Policy Gradients: In the recent era of deep reinforcement learning, policy gradients has
been instrumental to breakthroughs in control and robotics applications. Vanilla PG methods used to
suffer from poor sample complexity and high variance, where their sensitivity to step size makes it
susceptible to catastrophic effects of noise. TRPO [5] introduces a trust region for continuous control
tasks, while PPO [6] clips the gradient update so that the policy deviation is safe within a typical
stochastic gradient descent. ACER [7] improves sample efficiency with robust off-policy corrections
and experience replay. Both PPO and TRPO belong to the class of Minorize-Maximization
algorithms that exploit the convexity of a function in order to reach optima. Because PPO strikes a
balance between simplicity and performance that is close to ACER, we use it for updating policies
generated by our controller.

3 AutoAugment

Automatic data augmentation has very recently become an active area of research. Indeed, most
efforts towards the improvement of Neural Network (NN) training have been focused on optimizing
the neural nets’ architecture rather than the data augmentation process itself X. Moreover, the first
published work addressing auto-augmentation [2] for image classification has achieved state-of-the-
art results, indicating that this is a fruitful area of research. The authors’ best augmentation policies
were also found to be transferable when applied to different datasets than the one used for training.
The authors’ model, which is inspired from [8], is composed of a reinforcement learning agent
(the controller) as well as a child Convolutional Neural Network (CNN) utilized for training. The
high-level procedure is for the controller to output a set of transformations to augment the data, which
is then used to train the child CNN. Once trained, the child CNN is then tested against a validation
set and its validation loss is used to train the controller. This procedure is used to iteratively improve
the controller so that it can output better transforms. The original aim of this project was to extend
this methodology to image segmentation. However, due to many difficulties mainly dealing with lack
of computational power, we instead focused on the re-creation and improvement of this methodology
for image classification.

4 The Problem Setup

The problem of finding the best policy can be re-framed as one of searching a large discrete space.
Currently, there are 20 widely used operations for data augmentation including Shear-X(or Y),
Translate-X(or Y), Rotate, AutoContrast, Invert, Equalize, Solarize, Posterize, Contrast, Color,
Brightness, Sharpness, Cutout and Sample-Pairing. Each of those operations can vary in magnitude,
for example, the magnitude of the Rotate operations specifies the degree of rotation. Moreover, we
also associate a probability to each of those operations indicating the likelihood that they are applied
to an image during the augmentation process. Therefore, each transformation can be thought of
as consisting of three variables: operation (type), magnitude and probability. As in [2], we chose
to define a sub-policy as two transformations applied in sequence, and a policy as a set of five
sub-policies. During augmentation with a given policy, the augmenter uniformly chooses a sub-policy
and applies to an image, and the process is repeated for each image. By discretizing the magnitude
and probability of each possible transformation, we obtain the desired discrete search problem. Also
because of the stochastic nature of applying the operations, the process is non-differentiable and we
cannot use naive back-propagation to learn the policies without knowledge of the best combination
of operations as a priori groundtruth.

5 The Controller

5.1 Background: Long Short Term Memory (LSTM)

An LSTM [9] is a RNN architecture that is used for time series or sequence data. Similar to any other
RNN architecture, an LSTM has a feedback connection that allows it keep track of previous inputs
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Figure 1: A table showing the set of image transformations considered as part of our subpolicies.

Figure 2: Learning Model’s Architecture. Process denoted within the circle is repeated iteratively to
improve the policy outputted by the controller.

allowing it to capture the necessary time dependency. The main motivation behind the development
of LSTM is combating the vanishing gradient problem common to other architectures. This issue
arises in deep NNs, as gradients get smaller and smaller as they travel back through the deep-NN’s
layers. To do so, a basic LSTM cell consists of four gates as shown in Figure 3, two of which allow it
to "forget" parts of the stored state and ignore parts of the input through sigmoid functions.

5.2 Background: Proximal Policy Optimization (PPO)

PPO [6] is an algorithm used to compute the gradient in Policy Gradient Methods. For vanilla policy
gradients such as REINFORCE, the objective is computed as follows:

LPG(θ) = Êt[log πθ(at|st)Ât], (1)

where Ât is the estimated advantage obtained using a critic (which has a similar architecture to the
net used for policy prediction). On the other hand, PPO introduces additional constraints to stabilize
the learning process by bounding the gradient’s size at each step. The best of those objectives is the
Clipped Surrogate Objective

LCLIP(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)],

where rt(θ) =
πθ
πθold

(at|st).
(2)

The intuition behind the clipped objective is that it limits the step size if the advantage is positive and
a large step was previously taken towards increasing the probability of that action (rt(θ) > 1) so as
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Figure 3: A basic LSTM cell. The blocks x and h indicate the input and cell’s output respectively. The
sigmoid and hyperbolic tangent functions are denoted through the σ and tanh blocks respectively.

to stabilize learning. The clipping also occurs if the advantage is negative and the action previously
underwent a large step towards decreasing the probability of that action. Other objective functions
involving KL divergence are suggested in [6] but are deemed to perform at most as good as the
clipped objective.

5.3 The Controller’s Architecture

The controller (i.e. the RL agent selecting the policies) consists of two components: a prediction
algorithm and a training algorithm. The first is a deep neural net consisting of a single LSTM layer
containing 100 units. The output of the LSTM at each step is then fed into a full-connected layer
outputting a vector of variable size depending on which decision is being taken (i.e. operation,
magnitude or probability). Finally, the output of the fully-connected layer is then passed through
a softmax to obtain a decision. This process is repeated 30 times since each policy requires 5
sub-policies, each requiring 2 transforms, each requiring 3 decisions (operation, magnitude and
probability). The controller’s second component is PPO which is used to perform the gradient updates
using the child CNN’s validation accuracy. The main incentive behind the use of PPO is that its stable
and fast (when compared to TRPO for example). The validation accuracy from the child model is fed
into PPO as the advantage function which is in turn used to compute the gradient for the prediction
net.

5.4 The Child Model

The child model used is a simple 4-layer CNN for the CIFAR10 dataset shown in Figure 4. Each
convolution layer is followed by RELU activation and a max-pooling layer to reduce the feature size.
The max-pooling layer simply slides a max filter through the fed feature map to reduce its size and
is known to work quite well [10]. The last layer in the architecture is a fully-connected layer that
outputs a vector of softmax probabilities the same length as the number of labels.

5.5 Experiments and Results

We use CIFAR-10 to evaluate our data augmentation policies. CIFAR-10 has 10 output classes
and 60,000 images in the full dataset. For the interest of time and cross-algorithm comparison,
we randomly sample 300 images as training data and 50 as test data. We train a LSTM using
PPO to obtain its loss value, as defined in 5.2. For the PPO loss objective we use ε = 0.2 as
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Figure 4: A simple 4-layer (conv-32, conv-64, FC-256, FC-10) CNN on the CIFAR10 dataset.

it was found to be best from the original authors [6]. Our LSTM has 100 hidden units which
are fed into an array of 30 fully connected predictor heads that are each then passed through a
softmax for final probabilities. The 30 predictors output alternating number of units in series of
{|operations|, |probabilityIntervals|, |magnitudeIntervals|}. We then concatenated the soft-
max outputs into a 10 × (20 + 11 + 10) = 410 unit binary mask to denote the operation type,
probability, and magnitude of the 5 sub-policies (2-operations each) within a final output policy. The
output policy is weighted over the probability it is chosen by the old model as part of the surrogate
objective, and finally multiplied with the reward from child network Ât as loss to the current step
of training to be optimized by minibatch Adam [11]. The child reward is validation accuracy from
evaluating a child network trained for 100 epochs using each generated policy.

Interestingly, while conducting initial literature review [12, 13, 14, 3], we came across a few sources
that use other search methods that also perform rather well in similar tasks. In fact, the DeepAugment
repository on github includes a similar architecture to the AutoAugment one except that the authors
use a Bayesian Optimizer instead of Reinforcement Learning to reduce the computational cost.
Therefore, we additionally implemented a Bayesian Optimizer from scikit-opt and a Random-
Walk optimizer for the sake of comparison. The cross-algorithm test results are tabulated in 2. Note
that we also tried hand-tuning our own policy, which performed the worst out of all. This is an
interesting result since this hand-tuned policy mostly applied geometric operations. The mediocre
performance of the hand-tuned policy implies that for many researches who are unfamiliar with the
process of data augmentation, Auto-Augment can be greatly beneficial. Bayesian optimization also
yielded improvement over the baseline and was computationally faster than our policy-gradient based
controller, although our RL controller had far superior performance in terms of accuracy.

Opt. Method Rand Avg. Rand Best Hand-tuned Bayesian RL-controller
% Improvement -4.286 6.000 -12.000 6.000 12.000

Table 1: Comparison of different Optimization Methods. Absolute percent improvement is measured
with respect to the baseline performance of the child (i.e. without augmentation). The Bayesian
Optimizer was trained for a 1000 iterations vs. RL controller trained for 20 iterations with 100
training epochs per child model.

6 Conclusion

In this project, we have successfully re-implemented the work done in [2] and demonstrated that the
Reinforcement Learning controller, although computationally costly, does yield policies capable of
greatly increasing the classification accuracy. This increase in performance is strongly reflected in our
experiment since we only used 300 images. Additionally, we implemented various other optimization
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Operation Type 1 Probability 1 Magnitude 1 Operation Type 2 Probability 2 Magnitude 2
Rotate 1.000 9.00 Invert 0.900 8.00

Flip_LR 0.700 2.00 ShearX 0.900 4.00
Solarize 1.000 9.00 Flip_UD 1.000 0.00
Posterize 0.800 7.00 ShearY 0.000 1.00

Blur 0.000 0.00 TranslateY 0.600 3.00

Table 2: The best policy returned by the RL agent.

methods to contrast our results. Although random walk and the Bayesian optimizers do improve
performance and are computationally less costly, it is clear from our results that the RL approach is
still more fruitful.

Moreover, the initial objective of this project was to apply these suggested auto-augmentation methods
to the task of image segmentation rather than classification, which as mentioned earlier, we were
unable to do due to the learning curve of prerequisite knowledge and demand for computational
power. Therefore, we intend to keep working towards this goal even after the end of the semester.
Intuitively, the same architecture should work for segmentation except for the child model which
may need to undergo slight modifications. Because our code is implemented in TensorFlow, we can
also readily scale compute by training larger CNN models with TPU on the cloud. The segmentation
mean Average Precisions (mAP) can then be used to train the controller instead of the validation
accuracy.
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